Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.7 - The Dot Product - Exercise Set - Page 793: 46

Answer

The vectors $\mathbf{v}$ and $\mathbf{w}$ parallel.

Work Step by Step

Let the angle between $\mathbf{v}$ and $\mathbf{w}$ be $\theta $ such that the angle between the vectors $\mathbf{v}$ and $\mathbf{w}$ can be obtained using the formula $\theta ={{\cos }^{-1}}\left( \frac{\mathbf{v}\cdot \mathbf{w}}{\left| \mathbf{v} \right|\left| \mathbf{w} \right|} \right)$ as, $\begin{align} & \theta ={{\cos }^{-1}}\left( \frac{\mathbf{v}\cdot \mathbf{w}}{\left| \mathbf{v} \right|\left| \mathbf{w} \right|} \right) \\ & ={{\cos }^{-1}}\left( \frac{\left( -2\mathbf{i}+3\mathbf{j} \right)\cdot \left( -6\mathbf{i}+9\mathbf{j} \right)}{\left( \sqrt{{{\left( -2 \right)}^{2}}+{{3}^{2}}} \right)\left( \sqrt{{{\left( -6 \right)}^{2}}\mathbf{+}{{\left( 9 \right)}^{2}}} \right)} \right) \\ & ={{\cos }^{-1}}\left( \frac{\left( -2 \right)\cdot \left( -6 \right)+3\cdot 9}{\left( \sqrt{13} \right)\left( \sqrt{117} \right)} \right) \\ & ={{\cos }^{-1}}\left( \frac{12+27}{\sqrt{1521}} \right) \end{align}$ Solve ahead to get the result as, $\begin{align} & \theta ={{\cos }^{-1}}\left( \frac{12+27}{\sqrt{1521}} \right) \\ & ={{\cos }^{-1}}\left( \frac{39}{39} \right) \\ & ={{\cos }^{-1}}\left( 1 \right) \\ & ={{0}^{{}^\circ }} \end{align}$ Since, the angle between $\mathbf{v}$ and $\mathbf{w}$ is ${{0}^{{}^\circ }}$, $\mathbf{v}$ and $\mathbf{w}$ are parallel vectors. Hence, $\mathbf{v}$ and $\mathbf{w}$ are parallel vectors.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.