Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Review Exercises - Page 708: 35

Answer

a. $\frac{33}{65}$ b. $\frac{16}{65}$ c. $-\frac{33}{56}$ d. $\frac{24}{25}$ e. $\frac{2\sqrt {13}}{13}$

Work Step by Step

Given $sin\alpha=\frac{3}{5}, 0\lt \alpha \lt \frac{\pi}{2}$ and $sin\beta=\frac{12}{13}, \frac{\pi}{2}\lt \beta \lt\pi $ For angle $\alpha$, form a triangle with sides $3,4,5$. We have $cos\alpha=\frac{4}{5}, tan\alpha=\frac{3}{4}$. For angle $\beta$, form a triangle of sides $12,5,13$. We have $cos\beta=-\frac{5}{13}, tan\beta=-\frac{12}{5}$. a. Use the Addition Formulas $sin(\alpha+\beta)=sin\alpha cos\beta+ cos\alpha sin\beta =(\frac{3}{5})(-\frac{5}{13})+(\frac{4}{5})(\frac{12}{13})=\frac{33}{65}$ b. Use the Subtraction Formulas $cos(\alpha-\beta)=cos\alpha cos\beta+ sin\alpha sin\beta =(\frac{4}{5})(-\frac{5}{13})+(\frac{3}{5})(\frac{12}{13})=\frac{16}{65}$ c. Use the Addition Formulas $tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}=\frac{(\frac{3}{4})+(-\frac{12}{5})}{1-(\frac{3}{4})(-\frac{12}{5})}=-\frac{33}{56}$ d. Use the Double-Angle Formula $sin2\alpha = 2 sin\alpha cos\alpha = 2(\frac{3}{5})(\frac{4}{5})=\frac{24}{25}$ e. Use the Half-Angle Formula $\frac{\pi}{4}\lt \frac{\beta}{2} \lt\frac{\pi}{2} $ and $cos\frac{\beta}{2}=\sqrt {\frac{1+cos\beta}{2}}=\sqrt {\frac{1+(-\frac{5}{13})}{2}}=\frac{2\sqrt {13}}{13}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.