Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Review Exercises - Page 708: 26

Answer

The expression on the left-side is equal to the expression on the right-side.

Work Step by Step

The given expression on the left side $\frac{\sin 2\theta -\sin \theta }{\cos 2\theta +\cos \theta }$ can be simplified by applying the double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ and $\cos 2\theta =2{{\cos }^{2}}\theta -1$. $\begin{align} & \frac{\sin 2\theta -\sin \theta }{\cos 2\theta +\cos \theta }=\frac{2\sin \theta \cos \theta -\sin \theta }{2{{\cos }^{2}}\theta -1+\cos \theta } \\ & =\frac{\sin \theta \left( 2\cos \theta -1 \right)}{\left( 2\cos \theta -1 \right)\left( \cos \theta +1 \right)} \\ & =\frac{\sin \theta }{\cos \theta +1} \end{align}$ Rationalizing the expression gives: $\begin{align} & \frac{\sin \theta }{\cos \theta +1}=\frac{\sin \theta }{\cos \theta +1}.\frac{\cos \theta -1}{\cos \theta -1} \\ & =\frac{\sin \theta \left( \cos \theta -1 \right)}{{{\cos }^{2}}\theta -1} \\ & =\frac{\sin \theta \left( \cos \theta -1 \right)}{-{{\sin }^{2}}\theta } \\ & =\frac{-\left( \cos \theta -1 \right)}{\sin \theta } \end{align}$ Now, the expression can be written as: $\frac{-\left( \cos \theta -1 \right)}{\sin \theta }=\frac{1-\cos \theta }{\sin \theta }$ Hence, the expression on the left-side is equal to the expression on the right-side.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.