Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Review Exercises - Page 708: 34

Answer

See below.

Work Step by Step

b) In order to verify the equations, use the trigonometric identities. $\tan x=\frac{\sin x}{\cos x}$ and $\cot x=\frac{\cos x}{\sin x}$ Now, apply the above identities in the following equation: $\begin{align} & \frac{\tan x-1}{1-\cot x}=\frac{\frac{\sin x}{\cos x}-1}{1-\frac{\cos x}{\sin x}} \\ & =\frac{\frac{\sin x-\cos x}{\cos x}}{\frac{\sin x-\cos x}{\sin x}} \\ & =\frac{\left( \sin x-\cos x \right)\sin x}{\left( \sin x-\cos x \right)\cos x} \\ & =\frac{\sin x}{\cos x} \end{align}$ By using $\tan x=\frac{\sin x}{\cos x}$, we get: $\begin{align} & \frac{\tan x-1}{1-\cot x}=\frac{\sin x}{\cos x} \\ & =\tan x \end{align}$ Hence, the equation $\frac{\tan x-1}{1-\cot x}$ is equal to $\tan x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.