Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Review Exercises - Page 708: 31

Answer

The expression on the left-side is equal to the expression on the right-side.

Work Step by Step

The given expression on the left side $\tan \frac{x}{2}$ can be simplified by using the half angle formula $\tan \frac{x}{2}=\frac{1-\cos x}{\sin x}$. $\begin{align} & \tan \frac{x}{2}=\frac{1-\cos x}{\sin x} \\ & =\frac{1-\cos x}{\sin x}.\frac{\frac{1}{\cos x}}{\frac{1}{\cos x}} \\ & =\frac{\frac{1-\cos x}{\cos x}}{\frac{\sin x}{\cos x}} \end{align}$ Further solving and using the quotient identity $\frac{\sin x}{\cos x}=\tan x$, gives: $\begin{align} & \frac{\frac{1-\cos x}{\cos x}}{\frac{\sin x}{\cos x}}=\frac{\frac{1}{\cos x}-\frac{\cos x}{\cos x}}{\tan x} \\ & =\frac{\sec x-1}{\tan x} \end{align}$ Hence, the expression on the left-side is equal to the expression on the right-side.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.