Answer
$\frac{2}{5}$,$\frac{2}{3}$ , $\frac{6}{7}$,1
Work Step by Step
To find the first four terms of the sequence whose general term is $a_{n}$ = $\frac{2n}{n+4}$, we replace n in the formula with 1,2,3, and 4.
n=1, $a_{1}$ = $\frac{2n}{n+4}$ =$\frac{2*1}{1+4}$ = $\frac{2}{5}$
n=2, $a_{2}$ =$\frac{2n}{n+4}$ = $\frac{2*2}{2+4}$ = $\frac{4}{6}$ = $\frac{2}{3}$
n=3, $a_{3}$ = $\frac{2n}{n+4}$ =$\frac{2*3}{3+4}$ = $\frac{6}{7}$
n=4,$a_{4}$ = $\frac{2n}{n+4}$ = $\frac{2*4}{4+4}$ = $\frac{8}{8}$ =1
The first four terms are $\frac{2}{5}$,$\frac{2}{3}$ , $\frac{6}{7}$,1.