Answer
$=\dfrac{-19}{30}$
Work Step by Step
Here, we have $\sum_{i=0}^4\dfrac{(-1)^{i+1}}{(i+1)!}=\dfrac{(-1)^{0+1}}{(0+1)!}+\dfrac{(-1)^{1+1}}{(1+1)!}+\dfrac{(-1)^{2+1}}{(2+1)!}+\dfrac{(-1)^{3+1}}{(3+1)!}+\dfrac{(-1)^{4+1}}{(4+1)!}$
$=-\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{6}+\dfrac{1}{24}-\dfrac{1}{120}$
$=\dfrac{-120+60-20+5-1}{120}$
$=\dfrac{-19}{30}$