Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.7 - Combinations of Functions; Composite Functions - Exercise Set - Page 258: 33

Answer

The value of $f+g=3{{x}^{2}}+x-5,f-g=-3{{x}^{2}}+x-5,fg=\ 3{{x}^{3}}-15{{x}^{2}}$ and $\frac{f}{g}=\frac{x-5}{3{{x}^{2}}}$. The domain of the functions $f+g,f-g$ , and $fg$ is $\left( -\infty ,\infty \right)$ and $\frac{f}{g}$ is $\left( -\infty ,0 \right)\cup \left( 0,\infty \right)$.

Work Step by Step

Calculate the value of $f+g$ as shown below to get, $\begin{align} & f+g=f\left( x \right)+g\left( x \right) \\ & =\ x-5+3{{x}^{2}} \\ & =3{{x}^{2}}+x-5 \end{align}$ Calculate the value of $f-g$ as shown below to get, $\begin{align} & f-g=f\left( x \right)-g\left( x \right) \\ & =\ x-5-3{{x}^{2}} \\ & =-3{{x}^{2}}+x-5 \end{align}$ Calculate the value of $fg$ as shown below to get, $\begin{align} & fg=f\left( x \right)g\left( x \right) \\ & =\ \left( x-5 \right)\left( 3{{x}^{2}} \right) \\ & =3{{x}^{3}}-15{{x}^{2}} \end{align}$ Calculate the value of $\frac{f}{g}$ as shown below to get, $\begin{align} & \ \frac{f}{g}=\frac{f\left( x \right)}{g\left( x \right)} \\ & \ \ \ \ \ =\frac{x-5}{3{{x}^{2}}} \\ \end{align}$ If the function $\frac{f}{g}$ is divided by zero, it will be undefined. So, put the denominator $3{{x}^{2}}$ equal to zero. $\begin{align} & 3{{x}^{2}}=0 \\ & x=0 \end{align}$ Now, the domain of the function $\frac{f}{g}$ is all the real numbers except 0. Therefore, the domain of $\frac{f}{g}$ is $\left( -\infty ,0 \right)\cup \left( 0,\infty \right)$. In the functions $f+g,f-g,fg$, there are no divisions or even roots, so the domain of the functions $f+g,f-g,fg$ is the set of real numbers -- that is, $\left( -\infty ,\infty \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.