Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.7 - Combinations of Functions; Composite Functions - Exercise Set - Page 258: 30

Answer

The domain of the function $f\left( x \right)=\frac{7x+2}{{{x}^{3}}-2{{x}^{2}}-9x+18}$ is: $\left( -\infty ,-3 \right)\cup \left( -3,2 \right)\cup \left( 2,3 \right)\cup \left( 3,\infty \right)$.

Work Step by Step

In the given function $f\left( x \right)=\frac{7x+2}{{{x}^{3}}-2{{x}^{2}}-9x+18}$ if the denominator is zero, then it will make the function undefined. So, put the denominator ${{x}^{3}}-2{{x}^{2}}-9x+18$ equal to zero. Therefore, ${{x}^{3}}-2{{x}^{2}}-9x+18=0$ Factorize the equation ${{x}^{3}}-2{{x}^{2}}-9x+18=0$ ${{x}^{2}}\left( x-2 \right)\ -9\left( x-2 \right)=0$ $\left( {{x}^{2}}-9 \right)\left( x-2 \right)=0$ Case 1: $\begin{align} & {{x}^{2}}-9=\text{ }0\ \ \ \ \ \ \ \\ & \left( x-3 \right)\left( x+3 \right)=\text{ }0 \\ \end{align}$ This implies that $x=3$ and $x=-3$ Case 2: $\begin{align} & x-2=0 \\ & x=2 \\ \end{align}$ The factors of the equation are $-3,2$ , and $3$. Exclude the factors $-3,2$ , and $3$ from the domain of the function $f\left( x \right)=\frac{7x+2}{{{x}^{3}}-2{{x}^{2}}-9x+18}$. Thus, the domain is $\left( -\infty ,-3 \right)\cup \left( -3,2 \right)\cup \left( 2,3 \right)\cup \left( 3,\infty \right)$. Hence, the domain of the function $f\left( x \right)=\frac{7x+2}{{{x}^{3}}-2{{x}^{2}}-9x+18}$ is $\left( -\infty ,-3 \right)\cup \left( -3,2 \right)\cup \left( 2,3 \right)\cup \left( 3,\infty \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.