Answer
$1$
Work Step by Step
$$\lim_{x\to 0}\frac{\sin^2{x}+\sin{x}(\cos{x}-1)}{x^2}\\=\lim_{x\to 0}\frac{\sin^2{x}}{x^2}+\lim_{x\to 0}\frac{\sin{x}(\cos{x}-1)}{x^2}\\=\lim_{x\to 0}(\frac{\sin{x}}{x})^2+(\lim_{x\to 0}\frac{\sin{x}}{x}\frac{\cos{x}-1}{x})\\=1^2+1(0)\\=1.$$