Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 14 - A Preview of Calculus: The Limit, Derivative, and Integral of a Function - 14.2 Algebra Techniques for Finding Limits - 14.2 Assess Your Understanding - Page 884: 52

Answer

$-2$

Work Step by Step

General formula for average rate of change from $c$ to $x$ can be written as: $\dfrac{f(x)-f(c)}{x-c}$ We have: $f(x)=\dfrac{1}{x^2}$ In order to simplify the above expression, we will use the following rules. $(a) \lim\limits_{x \to c} \dfrac{a(x)}{b(x)}=\dfrac{\lim\limits_{x \to c} a(x)}{\lim\limits_{x \to c} b(x)} \\ (b) \lim\limits_{x \to c} p(x)=p(c)$ ; where $a$ as a constant. $\lim\limits_{x\to 1}\dfrac{f(x)-f(1)}{x-1}=\lim\limits_{x\to 1}\dfrac{\dfrac{1}{x^2}-1}{x-1} \\=\lim\limits_{x\to 1}\dfrac{\dfrac{1-x^2}{x^2}}{x-1} \\=\dfrac{\lim\limits_{x\to 1}-(x-1)(x+1)}{\lim\limits_{x\to 1} x^2(x-1)} \\=\dfrac{\lim\limits_{x\to 1} -(x+1)} {\lim\limits_{x\to 1} x^2} \\=-\dfrac{1+1}{1} \\=-2 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.