Answer
$\frac{13}{28}$
Work Step by Step
Factor each polynomial:
$$\lim_{x\to 3}\frac{x^3-3x^2+4x-12}{x^4-3x^3+x-3}\\=\lim_{x\to 3}\frac{(x-3)(x^2+4)}{(x-3)(x^3+1)}.$$
Cancel the common factors: $$\lim_{x\to 3}\frac{(x^2+4)}{(x^3+1)}\\=\frac{(3^2+4)}{(3^3+1)}\\=\frac{(9+4)}{27+1}\\=\frac{13}{28}$$