Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 6 - Algebra: Equations and Inequalities - 6.5 Quadratic Equations - Exercise Set 6.5 - Page 401: 99

Answer

the required values are\[b=3,4\].

Work Step by Step

Compare the equation \[{{x}^{2}}+bx+5\]with standard quadratic equation, we get \[\begin{align} & a=1 \\ & b=4 \\ & c=c \\ \end{align}\] Condition for real root is: \[\begin{align} & {{b}^{2}}-4ac=0 \\ & {{b}^{2}}=4ac \\ & {{4}^{2}}=4\left( 1 \right)\left( c \right) \\ & 16=4c \end{align}\] So, \[\begin{align} & c=\frac{16}{4} \\ & =4 \end{align}\] So, \[b=4\] And, \[\begin{align} & {{x}^{2}}+4x+4={{x}^{2}}+2x+2x+4 \\ & =x\left( x+2 \right)+2\left( x+2 \right) \\ & =\left( x+2 \right)\left( x+2 \right) \end{align}\] The other value of \[b\]is 3. So, \[\begin{align} & {{x}^{2}}+4x+3={{x}^{2}}+1x+3x+3 \\ & =x\left( x+1 \right)+3\left( x+1 \right) \\ & =\left( x+1 \right)\left( x+3 \right) \end{align}\] Hence, the required values are\[b=3,4\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.