Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 6 - Algebra: Equations and Inequalities - 6.5 Quadratic Equations - Exercise Set 6.5 - Page 401: 98

Answer

the required values are\[b=8,16\].

Work Step by Step

It is known that the solution of the quadratic equation \[a{{x}^{2}}+bx+c=0\] is; \[x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] The condition \[{{b}^{2}}-4ac\]gives the information that the solution is real, imaginary and equal If \[{{b}^{2}}-4ac>0\]the solution is real and distinct. If \[{{b}^{2}}-4ac=0\]the solution is equal. If \[{{b}^{2}}-4ac<0\]the solution is imaginary or complex. Compare the equation \[{{x}^{2}}+bx+5\]with the standard quadratic equation; \[\begin{align} & a=1 \\ & b=b \\ & c=15 \end{align}\] The conditionfor real root is; \[\begin{align} & {{b}^{2}}-4ac=0 \\ & {{b}^{2}}=4ac \\ & =4\left( 1 \right)\left( 15 \right) \\ & =60 \end{align}\] So, \[\begin{align} & b=\sqrt{60} \\ & =7.74 \end{align}\] So, put \[b=8\]in\[{{x}^{2}}+bx+15\]; \[\begin{align} & {{x}^{2}}+8x+15={{x}^{2}}+3x+5x+15 \\ & =x\left( x+3 \right)+5\left( x+3 \right) \\ & =\left( x+3 \right)\left( x+5 \right) \end{align}\] The other possibility is\[b=16\]. So, \[\begin{align} & {{x}^{2}}+16x+15={{x}^{2}}+1x+15x+15 \\ & =x\left( x+1 \right)+5\left( x+1 \right) \\ & =\left( x+1 \right)\left( x+5 \right) \end{align}\] Hence, the required values are\[b=8,16\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.