Answer
FOIL method $\left( 3x+5 \right)\left( 2x-5 \right)=6{{x}^{2}}-5x-25$.
Work Step by Step
The steps involved in multiplication of binomials by FOIL method are:
Consider an example, $\left( 3x+5 \right)\left( 2x-5 \right)$.
Step 1:Multiply the first term of each binomial together as:
$3x\times 2x=6{{x}^{2}}$
Step 2: Multiply the outer terms together as:
$\left( 3x \right)\left( -5 \right)=-15x$
Step 3: Multiply the inner terms together as:
$5\left( 2x \right)=10x$
Step 4: Multiply the last term of each expression together as:
$5\times -5=-25$
Step 5: List the four results of FOIL in order.
$6{{x}^{2}}-15x+10x-25$
Step 6: Combine the like terms.
$6{{x}^{2}}-5x-25$
By FOIL method $\left( 3x+5 \right)\left( 2x-5 \right)=6{{x}^{2}}-5x-25$.