University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.1 - Sequences - Exercises - Page 488: 83

Answer

Converges to $0$

Work Step by Step

Consider $\lim\limits_{n \to \infty} a_n=\lim\limits_{n \to \infty} (\dfrac{1}{3})^n+\dfrac{1}{\sqrt 2^n}$ Since, $ \lim\limits_{n \to \infty} x^n=0$ So, $\lim\limits_{n \to \infty} a_n=\lim\limits_{n \to \infty} (\dfrac{1}{3})^n+\dfrac{1}{\sqrt 2^n}=\lim\limits_{n \to \infty} [(\dfrac{1}{3})^n+(\dfrac{1}{\sqrt 2})^n]=0$ Hence, $\lim\limits_{n \to \infty} a_n=0$ and {$a_n$} is Convergent and converges to $0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.