University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.1 - Sequences - Exercises - Page 488: 57

Answer

Converges to $1$

Work Step by Step

Consider $\lim\limits_{n \to \infty} a_n= \lim\limits_{n \to \infty} (\dfrac{3}{n})^{1/n}$ Since, $\lim\limits_{n \to \infty} \sqrt[n] {n}=1$ and $\lim\limits_{n \to \infty} x^{1/n}=1$ when $x \gt 0$ So, $\lim\limits_{n \to \infty} a_n=\lim\limits_{n \to \infty} (\dfrac{3}{n})^{1/n}=\dfrac{\lim\limits_{n \to \infty} (3)^{1/n}}{\lim\limits_{n \to \infty} (n)^{1/n}}=\dfrac{1}{1}=1$ Hence, $\lim\limits_{n \to \infty} a_n=1$ and {$a_n$} is convergent and converges to $1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.