University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.1 - Sequences - Exercises - Page 488: 49

Answer

$\lim\limits_{n \to \infty} a_n=0 $ and {$a_n$} is convergent.

Work Step by Step

Consider $\lim\limits_{n \to \infty} a_n= \lim\limits_{n \to \infty} \dfrac{\ln (n+1)}{\sqrt n}$ But $\lim\limits_{n \to \infty} \dfrac{\ln (n+1)}{\sqrt n}=\dfrac{\infty}{\infty}$ We need to apply L-Hospital's rule: So, $\lim\limits_{n \to \infty} \dfrac{\ln (n+1)}{\sqrt n}=\lim\limits_{n \to \infty} \dfrac{ 2\sqrt n}{n+1}$ or, $\lim\limits_{n \to \infty} \dfrac{\dfrac{2}{\sqrt n}}{1+\dfrac{1}{n}}=0$ Hence, $\lim\limits_{n \to \infty} a_n=0 $ and {$a_n$} is convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.