University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.1 - Sequences - Exercises - Page 488: 63

Answer

Converges to $0$

Work Step by Step

Consider $\lim\limits_{n \to \infty} a_n= \lim\limits_{n \to \infty} \dfrac{n!}{n^n}$ Since, $\lim\limits_{n \to \infty} \sqrt[n] {n}=1$ and $\lim\limits_{n \to \infty} x^{1/n}=1$ when $x \gt 0$ If the sequence $a_{n}$ is both bounded and monotonic then the sequence converges. So, $\lim\limits_{n \to \infty} a_n= \lim\limits_{n \to \infty} \dfrac{n!}{n^n} \leq \lim\limits_{n \to \infty} (\dfrac{1}{n}) =0$ Hence, $\lim\limits_{n \to \infty} a_n=0$ and {$a_n$} is Convergent and converges to $0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.