Answer
Converges to $0$
Work Step by Step
Consider $\lim\limits_{n \to \infty} a_n= \lim\limits_{n \to \infty} \dfrac{(-4)^n}{n!}$
Since, $\lim\limits_{n \to \infty} \dfrac{x^n}{n!}=0$ when $x \gt 0$
So, $\lim\limits_{n \to \infty} a_n= \lim\limits_{n \to \infty} \dfrac{(-4)^n}{n!}=0$
Hence, $\lim\limits_{n \to \infty} a_n=0$ and {$a_n$} is Convergent and converges to $0$