Answer
Converges to $1$
Work Step by Step
Consider $\lim\limits_{n \to \infty} a_n= \lim\limits_{n \to \infty} 0.03^{\frac{1}{n}}$
But $\lim\limits_{n \to \infty} x^{\frac{1}{n}}=1$ when $x \gt 0$
So, $\lim\limits_{n \to \infty} a_n= \lim\limits_{n \to \infty} 0.03^{\frac{1}{n}}=1$
Hence, $\lim\limits_{n \to \infty} a_n=1 $ and {$a_n$} is convergent and converges to $1$