University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.6 - Limits Involving Infinity; Asymptotes of Graphs - Exercises - Page 107: 24

Answer

$$\lim_{x\to-\infty}\Big(\frac{x^2+x-1}{8x^2-3}\Big)^{1/3}=\frac{1}{2}$$

Work Step by Step

We would treat these exercises just like we treat the limits of rational functions: we would divide both numerator and denominator by the highest power of $x$ in the denominator. Also remember that $$\lim_{x\to\infty}\frac{a}{x^n}=\lim_{x\to-\infty}\frac{a}{x^n}=a\times0=0\hspace{1cm}(a\in R)$$ $$A=\lim_{x\to-\infty}\Big(\frac{x^2+x-1}{8x^2-3}\Big)^{1/3}$$ The highest power of $x$ in the denominator here is $x^2$, so we divide both numerator and denominator by $x^2$: $$A=\lim_{x\to-\infty}\Big(\frac{1+\frac{1}{x}-\frac{1}{x^2}}{8-\frac{3}{x^2}}\Big)^{1/3}=\Big(\frac{\lim_{x\to-\infty}1+\lim_{x\to-\infty}\frac{1}{x}-\lim_{x\to-\infty}\frac{1}{x^2}}{\lim_{x\to-\infty}8-\lim_{x\to-\infty}\frac{3}{x^2}}\Big)^{1/3}$$ $$A=\Big(\frac{1+0-0}{8-0}\Big)^{1/3}=\Big(\frac{1}{8}\Big)^{1/3}=\frac{1}{\sqrt[3]8}=\frac{1}{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.