University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.6 - Limits Involving Infinity; Asymptotes of Graphs - Exercises - Page 107: 20

Answer

$$\lim_{x\to\infty}g(x)=\infty$$ $$\lim_{x\to-\infty}g(x)=-\infty$$

Work Step by Step

To solve these exercises, we would divide both numerator and denominator by the highest power of $x$ in the denominator. Also remember that $$\lim_{x\to\infty}\frac{a}{x^n}=\lim_{x\to-\infty}\frac{a}{x^n}=a\times0=0\hspace{1cm}(a\in R)$$ (a) $$\lim_{x\to\infty}g(x)=\lim_{x\to\infty}\frac{x^3+7x^2-2}{x^2-x+1}$$ The highest power of $x$ in the denominator here is $x^2$, so we divide both numerator and denominator by $x^2$: $$\lim_{x\to\infty}g(x)=\lim_{x\to\infty}\frac{x+7-\frac{2}{x^2}}{1-\frac{1}{x}+\frac{1}{x^2}}$$ $$\lim_{x\to\infty}g(x)=\frac{\lim_{x\to\infty}(x+7)-0}{1-0+0}=\frac{\lim_{x\to\infty}(x+7)}{1}$$ $$\lim_{x\to\infty}g(x)=\lim_{x\to\infty}(x+7)$$ As $x\to\infty$, $(x+7)$ approaches $\infty$ as well. Therefore, $$\lim_{x\to\infty}g(x)=\lim_{x\to\infty}(x+7)=\infty$$ (b) $$\lim_{x\to-\infty}g(x)=\lim_{x\to-\infty}\frac{x^3+7x^2-2}{x^2-x+1}$$ Again, we divide both numerator and denominator by $x^2$: $$\lim_{x\to-\infty}g(x)=\lim_{x\to-\infty}\frac{x+7-\frac{2}{x^2}}{1-\frac{1}{x}+\frac{1}{x^2}}$$ $$\lim_{x\to-\infty}g(x)=\frac{\lim_{x\to-\infty}(x+7)-0}{1-0+0}=\frac{\lim_{x\to-\infty}(x+7)}{1}$$ $$\lim_{x\to-\infty}g(x)=\lim_{x\to-\infty}(x+7)$$ As $x\to-\infty$, $(x+7)$ approaches $-\infty$ as well. Therefore, $$\lim_{x\to-\infty}g(x)=\lim_{x\to-\infty}(x+7)=-\infty$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.