University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.6 - Limits Involving Infinity; Asymptotes of Graphs - Exercises - Page 107: 22

Answer

(a) $$\lim_{x\to\infty}h(x)=-\infty$$ (b) $$\lim_{x\to-\infty}h(x)=\infty$$

Work Step by Step

To solve these exercises, we would divide both numerator and denominator by the highest power of $x$ in the denominator. Also remember that $$\lim_{x\to\infty}\frac{a}{x^n}=\lim_{x\to-\infty}\frac{a}{x^n}=a\times0=0\hspace{1cm}(a\in R)$$ (a) $$\lim_{x\to\infty}h(x)=\lim_{x\to\infty}\frac{5x^8-2x^3+9}{3+x-4x^5}$$ The highest power of $x$ in the denominator here is $x^5$, so we divide both numerator and denominator by $x^5$: $$\lim_{x\to\infty}h(x)=\lim_{x\to\infty}\frac{5x^3-\frac{2}{x^2}+\frac{9}{x^5}}{\frac{3}{x^5}+\frac{1}{x^4}-4}$$ $$\lim_{x\to\infty}h(x)=\frac{\lim_{x\to\infty}(5x^3)-0+0}{0+0-4}=\frac{\lim_{x\to\infty}(5x^3)}{-4}=-\lim_{x\to\infty}(\frac{5x^3}{4})$$ As $x\to\infty$, $(x^3)$ approaches $\infty$, so $(5/4)x^3$ will approach $\infty$ as well. Therefore, $$\lim_{x\to\infty}h(x)=-\lim_{x\to\infty}\Big(\frac{5x^3}{4}\Big)=-\infty$$ (b) $$\lim_{x\to-\infty}h(x)=\lim_{x\to-\infty}\frac{5x^8-2x^3+9}{3+x-4x^5}$$ Again, we divide both numerator and denominator by $x^5$: $$\lim_{x\to-\infty}h(x)=\lim_{x\to-\infty}\frac{5x^3-\frac{2}{x^2}+\frac{9}{x^5}}{\frac{3}{x^5}+\frac{1}{x^4}-4}$$ $$\lim_{x\to-\infty}h(x)=\frac{\lim_{x\to-\infty}(5x^3)-0+0}{0+0-4}=\frac{\lim_{x\to-\infty}(5x^3)}{-4}=-\lim_{x\to-\infty}(\frac{5x^3}{4})$$ As $x\to-\infty$, $(x^3)$ approaches $-\infty$, so $(5/4)x^3$ will approach $-\infty$ as well. Therefore, $$\lim_{x\to-\infty}h(x)=-\lim_{x\to-\infty}\Big(\frac{5x^3}{4}\Big)=-(-\infty)=\infty$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.