University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.6 - Limits Involving Infinity; Asymptotes of Graphs - Exercises - Page 107: 18

Answer

$$\lim_{x\to\infty}h(x)=\lim_{x\to-\infty}h(x)=\frac{9}{2}$$

Work Step by Step

To solve these exercises, we would divide both numerator and denominator by the highest power of $x$ in the denominator. Also remember that $$\lim_{x\to\infty}\frac{a}{x^n}=\lim_{x\to-\infty}\frac{a}{x^n}=a\times0=0\hspace{1cm}(a\in R)$$ (a) $$\lim_{x\to\infty}h(x)=\lim_{x\to\infty}\frac{9x^4+x}{2x^4+5x^2-x+6}$$ The highest power of $x$ in the denominator here is $x^4$, so we divide both numerator and denominator by $x^4$: $$\lim_{x\to\infty}h(x)=\lim_{x\to\infty}\frac{9+\frac{1}{x^3}}{2+\frac{5}{x^2}-\frac{1}{x^3}+\frac{6}{x^4}}$$ $$\lim_{x\to\infty}h(x)=\frac{9+0}{2+0-0+0}=\frac{9}{2}$$ (b) $$\lim_{x\to-\infty}h(x)=\lim_{x\to-\infty}\frac{9x^4+x}{2x^4+5x^2-x+6}$$ Again, we divide both numerator and denominator by $x^4$: $$\lim_{x\to-\infty}h(x)=\lim_{x\to-\infty}\frac{9+\frac{1}{x^3}}{2+\frac{5}{x^2}-\frac{1}{x^3}+\frac{6}{x^4}}$$ $$\lim_{x\to-\infty}h(x)=\frac{9+0}{2+0-0+0}=\frac{9}{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.