University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.6 - Limits Involving Infinity; Asymptotes of Graphs - Exercises - Page 107: 15

Answer

$$\lim_{x\to\infty}f(x)=\lim_{x\to-\infty}f(x)=0$$

Work Step by Step

To solve these exercises, we would divide both numerator and denominator by the highest power of $x$ in the denominator. Also remember that $$\lim_{x\to\infty}\frac{a}{x^n}=\lim_{x\to-\infty}\frac{a}{x^n}=a\times0=0\hspace{1cm}(a\in R)$$ (a) $$\lim_{x\to\infty}f(x)=\lim_{x\to\infty}\frac{x+1}{x^2+3}$$ The highest power of $x$ in the denominator here is $x^2$, so we divide both numerator and denominator by $x^2$: $$\lim_{x\to\infty}f(x)=\lim_{x\to\infty}\frac{\frac{1}{x}+\frac{1}{x^2}}{1+\frac{3}{x^2}}$$ $$\lim_{x\to\infty}f(x)=\frac{0+0}{1+0}=\frac{0}{1}=0$$ (b) $$\lim_{x\to-\infty}f(x)=\lim_{x\to-\infty}\frac{x+1}{x^2+3}$$ Again, we divide both numerator and denominator by $x^2$: $$\lim_{x\to-\infty}f(x)=\lim_{x\to-\infty}\frac{\frac{1}{x}+\frac{1}{x^2}}{1+\frac{3}{x^2}}$$ $$\lim_{x\to-\infty}f(x)=\frac{0+0}{1+0}=\frac{0}{1}=0$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.