University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.6 - Limits Involving Infinity; Asymptotes of Graphs - Exercises - Page 107: 21

Answer

$$\lim_{x\to\infty}f(x)=\lim_{x\to-\infty}f(x)=\infty$$

Work Step by Step

To solve these exercises, we would divide both numerator and denominator by the highest power of $x$ in the denominator. Also remember that $$\lim_{x\to\infty}\frac{a}{x^n}=\lim_{x\to-\infty}\frac{a}{x^n}=a\times0=0\hspace{1cm}(a\in R)$$ (a) $$\lim_{x\to\infty}f(x)=\lim_{x\to\infty}\frac{3x^7+5x^2-1}{6x^3-7x+3}$$ The highest power of $x$ in the denominator here is $x^3$, so we divide both numerator and denominator by $x^3$: $$\lim_{x\to\infty}f(x)=\lim_{x\to\infty}\frac{3x^4+\frac{5}{x}-\frac{1}{x^3}}{6-\frac{7}{x^2}+\frac{3}{x^3}}$$ $$\lim_{x\to\infty}f(x)=\frac{\lim_{x\to\infty}(3x^4)+0-0}{6-0+0}=\frac{3\lim_{x\to\infty}(x^4)}{6}=\frac{\lim_{x\to\infty}(x^4)}{2}$$ $$\lim_{x\to\infty}f(x)=\lim_{x\to\infty}\Big(\frac{x^4}{2}\Big)$$ As $x\to\infty$, $(x^4/2)$ approaches $\infty$ as well. Therefore, $$\lim_{x\to\infty}f(x)=\lim_{x\to\infty}\Big(\frac{x^4}{2}\Big)=\infty$$ (b) $$\lim_{x\to-\infty}f(x)=\lim_{x\to-\infty}\frac{3x^7+5x^2-1}{6x^3-7x+3}$$ Again, we divide both numerator and denominator by $x^3$: $$\lim_{x\to-\infty}f(x)=\lim_{x\to-\infty}\frac{3x^4+\frac{5}{x}-\frac{1}{x^3}}{6-\frac{7}{x^2}+\frac{3}{x^3}}$$ $$\lim_{x\to-\infty}f(x)=\frac{\lim_{x\to-\infty}(3x^4)+0-0}{6-0+0}=\frac{3\lim_{x\to-\infty}(x^4)}{6}=\frac{\lim_{x\to-\infty}(x^4)}{2}$$ $$\lim_{x\to-\infty}f(x)=\lim_{x\to-\infty}\Big(\frac{x^4}{2}\Big)$$ As $x\to-\infty$, $(x^4)$ approaches $\infty$ and $(x^4/2)$ approaches $\infty$ as a result. Therefore, $$\lim_{x\to-\infty}f(x)=\lim_{x\to-\infty}\Big(\frac{x^4}{2}\Big)=\infty$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.