Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 392: 132

Answer

$\ln(\frac{2+\sqrt 3}{\sqrt 2+1})$

Work Step by Step

$\frac{dy}{dx}$ = $-cot(x)$ $L$ = $\int_{{\,\frac{\pi}{6}}}^{{\,\frac{\pi}{4}}}$$\sqrt{1+(-cot(x))^{2}}$ $dx$ $L$ = $\int_{{\,\frac{\pi}{6}}}^{{\,\frac{\pi}{4}}}$$\sqrt{1+cot^{2}(x)}$ $dx$ $L$ = $\int_{{\,\frac{\pi}{6}}}^{{\,\frac{\pi}{4}}}$$\sqrt{csx^{2}(x)}$ $dx$ $L$ = $\int_{{\,\frac{\pi}{6}}}^{{\,\frac{\pi}{4}}}$${csx(x)}$ $dx$ $L$ = $-\ln|{csx(x)+cot(x)}|$ $|_{{\,\frac{\pi}{6}}}^{{\,\frac{\pi}{4}}}$ $L$ = $-[(\ln|csx(\frac{\pi}{4})+cot(\frac{\pi}{4})|)-(\ln|{csx(\frac{\pi}{6})+cot(\frac{\pi}{6})}|)]$ $L$ = $[-(\ln|\sqrt 2+1|)+(\ln|2+\sqrt 3|)]$ $L$ = $\ln(\frac{2+\sqrt 3}{\sqrt 2+1})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.