Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 392: 129

Answer

$\frac{e^{2}-1}{2e}$

Work Step by Step

$\frac{dy}{dx}$ = $\frac{1}{2}(e^{x}-e^{-x})$ $L$ = $\int_{{\,0}}^{{\,1}}$$\sqrt {1+(\frac{1}{2}(e^{x}-e^{-x}))^{2}}$ $dx$ $L$ = $\int_{{\,0}}^{{\,1}}$$\sqrt {1+\frac{1}{4}e^{2x}-\frac{1}{2}+\frac{1}{4}e^{-2x}))}$ $dx$ $L$ = $\int_{{\,0}}^{{\,1}}$$\sqrt {\frac{1}{4}e^{2x}+\frac{1}{2}+\frac{1}{4}e^{-2x}))}$ $dx$ $L$ = $\int_{{\,0}}^{{\,1}}$$\sqrt {(\frac{1}{2}(e^{x}+e^{-x}))^{2}}$ $dx$ $L$ = $\int_{{\,0}}^{{\,1}}$${\frac{1}{2}(e^{x}+e^{-x})}$ $dx$ $L$ = ${\frac{1}{2}(e^{x}-e^{-x})}$$|_{{\,0}}^{{\,1}}$ $L$ = ${\frac{1}{2}[(e-e^{-1})-(1-1)]}$ $L$ = $\frac{1}{2}(e-\frac{1}{e})$ $L$ = $\frac{e^{2}-1}{2e}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.