Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 392: 125

Answer

$$ \int_{0}^{\ln 3}\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{\mathrm{x}}\right) \mathrm{d} \mathrm{x} =2$$

Work Step by Step

Given $$ \int_{0}^{\ln 3}\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{\mathrm{x}}\right) \mathrm{d} \mathrm{x} $$ So, we have \begin{aligned} I&=\int_{0}^{\ln 3}\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{\mathrm{x}}\right) \mathrm{dx}\\ &=\left[\frac{\mathrm{e}^{2 \mathrm{x}}}{2}-\mathrm{e}^{\mathrm{x}}\right]_{0}^{\ln 3}\\ &=\left(\frac{\mathrm{e}^{2 \mathrm{\ln3} }}{2}-\mathrm{e}^{\ln 3}\right)-\left(\frac{\mathrm{e}^{0}}{2}-\mathrm{e}^{0}\right)\\ &=\left(\frac{9}{2}-3\right)-\left(\frac{1}{2}-1\right)\\ &=\frac{8}{2}-2\\ &=2 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.