Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 392: 127

Answer

$e^{\frac{x}{2}} -1$

Work Step by Step

from $L$ = $\int_{{\,a}}^{{\,b}}$$\sqrt{1+(\frac{dy}{dx})^{2}}$ $dx$ and $L$ = $\int_{{\,0}}^{{\,1}}$$\sqrt{1+\frac{1}{4}e^{x}}$ $dx$ so $(\frac{dy}{dx})^{2}$ = $\frac{1}{4}e^{x}$ $\frac{dy}{dx}$ = $\frac{1}{2}e^{\frac{x}{2}}$ $y$ = $\int$$\frac{1}{2}e^{\frac{x}{2}}$$dx$ $y$ = $e^{\frac{x}{2}} + C$ Curve through the original so $y(0)$ = $0$ $0$ = $e^{0} + C$ $0$ = $1 + C$ $C$ = $-1$ $y$ = $e^{\frac{x}{2}} -1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.