Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 392: 130

Answer

$\ln(\frac{16}{9})$

Work Step by Step

$\frac{dy}{dx}$ = $\frac{e^{x}}{e^{x}-1}-\frac{e^{x}}{e^{x}+1}$ $\frac{dy}{dx}$ = $\frac{2e^{x}}{e^{2x}-1}$ $L$ = $\int_{{\,\ln2}}^{{\,\ln3}}$$\sqrt {1+(\frac{2e^{x}}{e^{2x}-1})^{2}}$ $dx$ $L$ = $\int_{{\,\ln2}}^{{\,\ln3}}$$\sqrt {\frac{e^{4x}+2e^{2x}+1}{(e^{2x}-1)^{2}}}$ $dx$ $L$ = $\int_{{\,\ln2}}^{{\,\ln3}}$$\sqrt {(\frac{e^{2x}+1}{e^{2x}-1})^{2}}$ $dx$ $L$ = $\int_{{\,\ln2}}^{{\,\ln3}}$${\frac{e^{2x}+1}{e^{2x}-1}}$ $dx$ $L$ = $\int_{{\,\ln2}}^{{\,\ln3}}$${\frac{\frac{e^{2x}+1}{e^{x}}}{\frac{e^{2x}-1}{e^{x}}}}$ $dx$ $L$ = $\int_{{\,\ln2}}^{{\,\ln3}}$${\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}}$ $dx$ $u$ = ${e^{x}-e^{-x}}$ $du$ = ${e^{x}+e^{-x}}$$dx$ $so$ $L$ = $\int$$\frac{1}{u}$ $du$ $L$ = $\ln{u}$ $L$ = $\ln({e^{x}-e^{-x}})$$|_{{\,\ln2}}^{{\,\ln3}}$ $L$ = $\ln(3-\frac{1}{3})-\ln(2-\frac{1}{2})$ $L$ = $\ln(\frac{8}{3})-\ln(\frac{3}{2})$ $L$ = $\ln(\frac{8}{3}\times\frac{2}{3})$ $L$ = $\ln(\frac{16}{9})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.