Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 6: Applications of Definite Integrals - Section 6.6 - Moments and Centers of Mass - Exercises 6.6 - Page 361: 30

Answer

$\overline {x} =\pi -\dfrac{1}{2}; \overline {y}=\dfrac{9}{8}$

Work Step by Step

We have $\overline {x}=\dfrac{1}{4 \pi } \int_{0}^{2 \pi } x \cdot (2+\sin x) dx$ or, $\overline {x}=(\dfrac{1}{4 \pi }) \times [x^2+\sin x-x \cos x]_0^{2 \pi}$ or, $\overline {x}=\pi -\dfrac{1}{2}$ $\overline {y}=\dfrac{1}{4 \pi } \int_{0}^{2 \pi } (2+\sin x) \times [\dfrac{2+\sin x}{2}] dx $ or, $\overline {y}=\dfrac{1}{8\pi } \int_{0}^{2 \pi } 4+4 \sin x+\dfrac{1-\cos 2x}{2} dx$ or, $\overline {y}=\dfrac{9}{8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.