Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 6: Applications of Definite Integrals - Section 6.6 - Moments and Centers of Mass - Exercises 6.6 - Page 361: 13

Answer

$\overline {x}=\dfrac{3}{2} , \overline {y} =\dfrac{1}{2}$

Work Step by Step

$m_x=\int_{1}^{2} x^2 \cdot x^{-1} \cdot (\dfrac{2}{x^2}) dx=-2[\dfrac{1}{x}]_1^2=1 $ and $m=\int^{1}_{2} x^2 (2x^{-2}) dx=2$ $\implies \overline {y}=\dfrac{m_x}{m}=\dfrac{1}{2} $ $m_y=\int_{1}^{2} x^2 (x) (2 x^{-2}) dx=(x^2)_1^2=3 $ and $m=\int^{1}_{2} x^2 \times (2x^{-2}) dx=2$ $\implies \overline {x}=\dfrac{m_y}{m}=\dfrac{3}{2} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.