Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 6: Applications of Definite Integrals - Section 6.6 - Moments and Centers of Mass - Exercises 6.6 - Page 361: 27

Answer

$\overline {x} =\dfrac{1}{2}; \overline {y}=4$

Work Step by Step

We have $\overline {x}=\dfrac{6}{125} \int_{-2}^{3} x\cdot (x+6-x^2) dx $ or, $=\dfrac{6}{125} [ \dfrac{x^3}{3}+3x^2-\dfrac{x^4}{4}]_{-2}^4 $ or, $=\dfrac{1}{12}$ and $\overline {y}=\dfrac{6}{125} \int_{-2}^{3} \dfrac{(x+6+x^2)}{2}\cdot (x+6-x^2) dx $ or, $=\dfrac{3}{125} \times [ \dfrac{x^3}{3}+6x^2+36x-\dfrac{x^5}{5}]_{-2}^{3} $ or, $=4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.