Answer
$(\overline {x}, \overline {y})=(\dfrac{3}{5},\dfrac{1}{2} )$
Work Step by Step
$m_x=\int_{0}^{1} 12x \cdot (x) \cdot (x-x^2) dx=\dfrac{3}{5}$ and $m=1$
$\implies \overline {x}=\dfrac{m_x}{m}=\dfrac{3}{5} $
$m_y=\int_{0}^{1} (12x)\times [\dfrac{x+x^2}{2}]\times (x-x^2) dx=[\dfrac{3x^4}{2}-x^6]_0^1=\dfrac{1}{2}$
and $m=1$
$\overline {y}=\dfrac{m_x}{m}=\dfrac{1}{2} $