Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 6: Applications of Definite Integrals - Section 6.6 - Moments and Centers of Mass - Exercises 6.6 - Page 361: 14

Answer

$(\overline {x}, \overline {y})=(\dfrac{3}{5},\dfrac{1}{2} )$

Work Step by Step

$m_x=\int_{0}^{1} 12x \cdot (x) \cdot (x-x^2) dx=\dfrac{3}{5}$ and $m=1$ $\implies \overline {x}=\dfrac{m_x}{m}=\dfrac{3}{5} $ $m_y=\int_{0}^{1} (12x)\times [\dfrac{x+x^2}{2}]\times (x-x^2) dx=[\dfrac{3x^4}{2}-x^6]_0^1=\dfrac{1}{2}$ and $m=1$ $\overline {y}=\dfrac{m_x}{m}=\dfrac{1}{2} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.