Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 6: Applications of Definite Integrals - Section 6.6 - Moments and Centers of Mass - Exercises 6.6 - Page 361: 28

Answer

$\overline {x} =\dfrac{33}{85}; , \overline {y} =\dfrac{698}{595}$

Work Step by Step

We have $\overline {x}=\dfrac{12}{17} \int_{0}^{1} x\cdot (2-x^3-x^2) dx $ or, $=(\dfrac{12}{17}) \times [x^2- \dfrac{x^5}{5}-\dfrac{x^4}{4}]_{0}^{1}$ or, $\overline{x}=\dfrac{33}{85}$ and $\space \overline {y}=\dfrac{12}{17} \int_{0}^{1} (2-x^3-x^2) \times \dfrac{(2+x^3+x^2)}{2}dx$ or, $\overline {y} =\dfrac{6}{17} [4x- \dfrac{x^7}{7}+\dfrac{x^6}{3}-\dfrac{x^5}{5}]_{0}^{1}$ or, $\overline {y}=\dfrac{698}{595}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.