Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.2 - Sigma Notation and Limits of Finite Sums - Exercises 5.2 - Page 265: 9

Answer

(a) and (c) are equivalent; (b) is not equivalent to the other two.

Work Step by Step

(a) 4$\Sigma_{k=2}$ $\frac{(-1)^{k-1}}{k-1}$= $\frac{(-1)^{2-1}}{2-1}$+ $\frac{(-1)^{3-1}}{3-1}$+ $\frac{(-1)^{4-1}}{4-1}$ =-1+(1/2)-(1/3) (b) 2$\Sigma_{k=0}$ $\frac{(-1)^{k}}{k-1}$= $\frac{(-1)^{0}}{0+1}$+ $\frac{(-1)^{1}}{1+1}$+ $\frac{(-1)^{2}}{2+1}$ =1-(1/2)+(1/3) (c) 1$\Sigma_{k=-4}$ $\frac{(-1)^{k}}{k+2}$= $\frac{(-1)^{-1}}{-1+2}$+ $\frac{(-1)^{0}}{0+2}$+ $\frac{(-1)^{1}}{1+2}$ =-1+(1/2)-(1/3) Hence proved (a) and (c) are equivalent; (b) is not equivalent to the other two.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.