Answer
Yes, $x=\pi/6, 5\pi/6$
Work Step by Step
Step 1. Given $y=x+2cos(x)$, we have $y'=1-2sin(x)$
Step 2. For a horizontal tangent, let $y'=0$, we have $sin(x)=1/2$ and $x=\pi/6, 5\pi/6$ in $[0,2\pi]$
Step 3. At $x=\pi/6$, $y=\pi/6+2cos(\pi/6)=\pi/6+\sqrt 3$, and the tangent line equation is $y=\pi/6+\sqrt 3$
Step 4. At $x=5\pi/6$, $y=5\pi/6+2cos(5\pi/6)=\pi/6-\sqrt 3$, and the tangent line equation is $y=\pi/6-\sqrt 3$
Step 5. See graph.