Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.5 - Derivatives of Trigonometric Functions - Exercises 3.5 - Page 141: 29

Answer

$sec^{2}q$

Work Step by Step

Using quotient rule, we have $\frac{dp}{dq}= \frac{[(sin q+cos q)'\times cos q]-[(cosq)'\times(sin q+cos q)]}{cos^{2}q}$ $= \frac{[(cosq-sinq)cosq]-[-sin q(sinq+cosq)]}{cos^{2}q}$ $=\frac{[cos^{2}q-sin q cos q]-[-sin^{2}q-sinqcosq]}{cos^{2}q}$ $=\frac{cos^{2}q+sin^{2}q}{cos^{2}q}$= $1+tan^{2}q=sec^{2}q$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.