Answer
$\frac{sec^2q}{(1+tanq)^2}$
Work Step by Step
Given that $p=\frac{tanq}{1+tanq}$
Differentiating both sides, we obtain:
$p^{\prime}=\frac{(1+tanq).tanq^{\prime}-tanq.(1+tan q)^{\prime}}{(1+tanq)^2}$
$\implies p^{\prime}=\frac{(1+tanq).sec^2q-tanq.sec^2q}{(1+tanq)^2}$
$p^{\prime}=\frac{sec^2q+sec^2q\space tanq-tanq\space sec^2q}{(1+tanq)^2}$
$p^{\prime}=\frac{sec^2q}{(1+tanq)^2}$