Answer
$2 \pi$
Work Step by Step
Consider $\iint_{R} f(t, u) dA= \int_{-\pi/3}^{\pi/3} \int_{0}^{\sec t} 3 \cos t du dt= \int_{-\pi/3}^{\pi/3} [ 3u \cos t ]_{0}^{\sec t} dt$
or, $= \int_{-\pi/3}^{\pi/3} 3 \sec t \cos t dt$
or, $= \int_{-\pi/3}^{\pi/3} 3 dt$
Thus, we have $I=[3t]_{-\pi/3}^{\pi/3}=2 \pi$