Answer
8$\ln$8 - 16 + e
Work Step by Step
$\lim\limits_{1 \to \ln8}\int\lim\limits_{0 \to \ln{y}}\int$e$^{x+y}$ dxdy
$\lim\limits_{1 \to \ln8}\int$[e$^{x+y}$]$^{\ln{y}}_{0}$ dy
$\lim\limits_{1 \to \ln8}\int$[e$^{\ln{y}+y}-e$$^{y}$] dy
$\lim\limits_{1 \to \ln8}\int$(ye$^{y}$-e$^{y}$)
[(y-1)e$^{y}$-e$^{y}$]$^{\ln{8}}_{1}$
8($\ln{8}$-1)-8-e
8$\ln{8}$-16-e