Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Section 15.2 - Double Integrals over General Regions - Exercises 15.2 - Page 882: 15

Answer

(a) $\int_{e^{-x}}^1 \int_{0}^{\ln 3} f(x,y) dy dx$ (b) $\int_{-\ln y}^{\ln 3} \int_{1/3}^{1} f(x,y) dx dy$

Work Step by Step

(a) For vertical cross-sections, the region $R$ can be defined as: $R=$ { $( x,y) | e^{-x} \leq y \leq 1 , 0 \leq x \leq \ln (3) $} Hence, we have $\int_{e^{-x}}^1 \int_{0}^{\ln 3} f(x,y) dy dx$ (b) For horizontal cross-sections, the region $R$ can be defined as: $R=$ { $( x,y) | -\ln y \leq x \leq \ln 3 , \dfrac{1}{3} \leq y \leq 1$} Hence, we have $\int_{-\ln y}^{\ln 3} \int_{1/3}^{1} f(x,y) dx dy$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.