Answer
$\dfrac{1}{6}$
Work Step by Step
After integrating the inner $dy$ integral, we get:
$I= \int_{0}^{1} [x^2y+\dfrac{y^3}{3}]_0^{1-x} dx$
or, $= \int_{0}^{1 } x^2(1-x) y+\dfrac{(1-x)^3}{3} dx$
or, $= \int_{0}^{1 } \dfrac{1-4x^3-3x+6x^2}{3} dx$
or, $= [ \dfrac{x-x^4-3(x^2/2)+2x^3}{3}]_0^1 dx$
Thus, we have $I=\dfrac{1}{6}$