Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Section 15.2 - Double Integrals over General Regions - Exercises 15.2 - Page 882: 13

Answer

a) $\int_0^9 \int_{0}^{\sqrt x} f(x,y) dy dx$ (b) $\int_{0}^{3} \int_{y^2}^{9} f(x,y) dx dy$

Work Step by Step

(a) For vertical cross-sections, the region $R$ can be defined as: $R=$ { $( x,y) | 0 \leq y \leq \sqrt x , 0 \leq x \leq 9$} Hence, we have $\int_0^9 \int_{0}^{\sqrt x} f(x,y) dy dx$ (b) For horizontal cross-sections, the region $R$ can be defined as: $R=$ { $( x,y) | y^2 \leq x \leq 9 , 0 \leq y \leq 3$} Hence, we have $\int_{0}^{3} \int_{y^2}^{9} f(x,y) dx dy$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.