Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 14: Partial Derivatives - Section 14.2 - Limits and Continuity in Higher Dimensions - Exercises 14.2 - Page 796: 21

Answer

$1$

Work Step by Step

Here, we have $P(x,y) \to O(0,0)$ This implies that $D(P,O) \to 0$ Therefore, $D^2=x^2+y^2; D \to 0$ As we can see that $\lim\limits_{D \to 0}\dfrac{\sin D^2}{D^2}=\dfrac{0}{0}$. Using Sandwich theorem that states if $\lim\limits_{x \to 0}\dfrac{sinx}{x}=1$ $\lim\limits_{D \to 0}\dfrac{\sin D^2}{D^2}=1$.
This answer is currently locked

Someone from the community is currently working feverishly to complete this textbook answer. Don’t worry, it shouldn’t be long.