Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 14: Partial Derivatives - Section 14.2 - Limits and Continuity in Higher Dimensions - Exercises 14.2 - Page 796: 20

Answer

$\dfrac{1}{4}$

Work Step by Step

Re-arrange the equation as follows: $\lim\limits_{(x,y) \to (4,3)} \dfrac{\sqrt x-\sqrt {y+1}}{(x-y)-1}=\lim\limits_{(x,y) \to (4,3)} \dfrac{\sqrt x-\sqrt {y+1}}{(\sqrt x+\sqrt {y+1})(\sqrt x-\sqrt {y+1})}$ and $\lim\limits_{(x,y) \to (4,3)} \dfrac{\sqrt x-\sqrt {y+1}}{(\sqrt x+\sqrt {y+1})(\sqrt x-\sqrt {y+1})}=\lim\limits_{(x,y) \to (4,3)} \dfrac{1}{(\sqrt x-\sqrt {y+1})}$ Plug the limits, then we get $\dfrac{1}{(\sqrt 4+\sqrt {3+1})}=\dfrac{1}{(\sqrt 4+\sqrt {4})}=\dfrac{1}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.