Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 14: Partial Derivatives - Section 14.2 - Limits and Continuity in Higher Dimensions - Exercises 14.2 - Page 796: 18

Answer

$4$

Work Step by Step

Re-arrange the given equation as: $\lim\limits_{(x,y) \to (2,2)} \dfrac{(x+y)-4}{\sqrt {x+y}-2}=\lim\limits_{(x,y) \to (2,2)} \dfrac{(\sqrt{x+y})^2-(2)^2}{\sqrt {x+y}-2}$ Plug the limits, then we get $\lim\limits_{(x,y) \to (2,2)} \dfrac{(\sqrt{x+y})-2)(\sqrt{x+y}+2)}{\sqrt {x+y}-2}=\lim\limits_{(x,y) \to (2,2)}(\sqrt{x+y}+2)=2+2=4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.