Answer
converges to $0$.
Work Step by Step
As we know that a sequence converges when $\lim\limits_{n \to \infty}a_n$ exists.
Consider $a_n=\sin n \pi$
Apply limits to both sides.
$\lim\limits_{n \to \infty}a_n=\lim\limits_{n \to \infty}\sin n \pi$
$\lim\limits_{n \to \infty}a_n=\lim\limits_{n \to \infty}(0)$
$\lim\limits_{n \to \infty}a_n=0$
Therefore, the sequence converges to $0$.